6,015 research outputs found

    Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy2Ti2O7

    Get PDF
    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent \chi_ac(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca2+ substitution for magnetic Dy3+ is similar to the previous study on nonmagnetic isovalent Y3+ substituted Dy2-xYxTi2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca2+ substitution for Dy3+ ions.Comment: 9 pages, 7 figures, 1 tabl

    Gravitational Collapse of Dust with a Cosmological Constant

    Get PDF
    The recent analysis of Markovic and Shapiro on the effect of a cosmological constant on the evolution of a spherically symmetric homogeneous dust ball is extended to include the inhomogeneous and degenerate cases. The histories are shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.

    Galactic Potentials

    Get PDF
    The information contained in galactic rotation curves is examined under a minimal set of assumptions. If emission occurs from stable circular geodesic orbits of a static spherically symmetric field, with information propagated to us along null geodesics, observed rotation curves determine galactic potentials without specific reference to any metric theory of gravity. Given the potential, the gravitational mass can be obtained by way of an anisotropy function of this field. The gravitational mass and anisotropy function can be solved for simultaneously in a Newtonian limit without specifying any specific source. This procedure, based on a minimal set of assumptions, puts very strong constraints on any model of the "dark matter".Comment: A somewhat longer form of the final version to appear in Physical Review Letters.Clarification and further reference

    Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrM2M_2V2_2O8_8 (MM = Co, Mn)

    Full text link
    Magnetic correlations of two iso-structural quasi-one-dimensional (1D) antiferromagnetic spin-chain compounds SrM2M_2V2_2O8_8 (MM = Co, Mn) have been investigated by magnetization and powder neutron diffraction. Two different collinear antiferromagnetic (AFM) structures, characterized by the propagation vectors, kk = (0 0 1) and kk = (0 0 0), have been found below ∌\sim 5.2 K and ∌\sim 42.2 K for the Co- and Mn-compounds, respectively. For the Mn-compound, AFM chains (along the cc axis) order ferromagnetically within the abab plane, whereas, for the Co-compound, AFM chains order ferro-/antiferromagnetically along the a/ba/b direction. The critical exponent study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg universality classes, respectively. For both compounds, short-range spin-spin correlations are present over a wide temperature range above TNT_N. The reduced ordered moments at base temperature (1.5 K) indicate the presence of quantum fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table

    Kaluza-Klein solitons reexamined

    Get PDF
    In (4 + 1) gravity the assumption that the five-dimensional metric is independent of the fifth coordinate authorizes the extra dimension to be either spacelike or timelike. As a consequence of this, the time coordinate and the extra coordinate are interchangeable, which in turn allows the conception of different scenarios in 4D from a single solution in 5D. In this paper, we make a thorough investigation of all possible 4D scenarios, associated with this interchange, for the well-known Kramer-Gross-Perry-Davidson-Owen set of solutions. We show that there are {\it three} families of solutions with very distinct geometrical and physical properties. They correspond to different sets of values of the parameters which characterize the solutions in 5D. The solutions of physical interest are identified on the basis of physical requirements on the induced-matter in 4D. We find that only one family satisfies these requirements; the other two violate the positivity of mass-energy density. The "physical" solutions possess a lightlike singularity which coincides with the horizon. The Schwarzschild black string solution as well as the zero moment dipole solution of Gross and Perry are obtained in different limits. These are analyzed in the context of Lake's geometrical approach. We demonstrate that the parameters of the solutions in 5D are not free, as previously considered. Instead, they are totally determined by measurements in 4D. Namely, by the surface gravitational potential of the astrophysical phenomena, like the Sun or other stars, modeled in Kaluza-Klein theory. This is an important result which may help in observations for an experimental/observational test of the theory.Comment: In V2 we include an Appendix, where we examine the conformal approach. Minor changes at the beginning of section 2. In V3 more references are added. Minor editorial changes in the Introduction and Conclusions section

    Consumption of submerged aquatic macrophytes by rudd (scardinius erythrophthalmus L.) in New Zealand

    Get PDF
    In experiments in New Zealand, rudd (Scardinius erythrophthalmus L.) of 108–277mm fork length (FL) ate a wide range of native and introduced submerged aquatic macrophytes in captivity and in the field. Rudd consumed the native charophytes Chara globularis Thuill., Chara fibrosa Ag. ex Bruz., and Nitella spp., the native macrophytes Potamogeton ochreatus Raoul. and Myriophyllum propinquum A. Cunn., and the introduced macrophytes Elodea canadensis Michx., Egeria densa Planch., Lagarosiphon major L., and Ceratophyllum demersum L. Rudd consistently consumed the Nitella spp. and Potamogeton ochreatus before Ceratophyllum demersum. From the results of experiments in tanks and in the field, we found the order of highest to lowest palatability was: Nitella spp. > Potamogeton ochreatus > Elodea canadensis> Chara globularis = Chara fibrosa> Egeria densa = Lagarosiphon major > Myriophyllum propinquum > Ceratophyllum demersum. The order of consumption was subject to some variation with season, especially for Egeria densa, Lagarosiphon major, and Myriophyllum propinquum. Rudd consumed up to 20% of their body weight per day of Egeria densa in spring, and 22% of their body weight per day of Nitella spp. in summer. Consumption rates were considerably lower in winter than in summer. The results of our field trial suggested that the order of consumption also applies in the field and that rudd are having a profound impact on vulnerable native aquatic plant communities in New Zealand. Nitella spp. and Potamogeton ochreatus are likely to be selectively eaten, and herbivory by rudd might prevent the re-establishment of these species in restoration efforts

    T. S. Eliot's ' Vita Nuova' and 'Mi-Chemin': 'The Sensus Historicus'

    Get PDF

    Optimisation of two-dimensional ion trap arrays for quantum simulation

    Get PDF
    The optimisation of two-dimensional (2D) lattice ion trap geometries for trapped ion quantum simulation is investigated. The geometry is optimised for the highest ratio of ion-ion interaction rate to decoherence rate. To calculate the electric field of such array geometries a numerical simulation based on a "Biot-Savart like law" method is used. In this article we will focus on square, hexagonal and centre rectangular lattices for optimisation. A method for maximising the homogeneity of trapping site properties over an array is presented for arrays of a range of sizes. We show how both the polygon radii and separations scale to optimise the ratio between the interaction and decoherence rate. The optimal polygon radius and separation for a 2D lattice is found to be a function of the ratio between rf voltage and drive frequency applied to the array. We then provide a case study for 171Yb+ ions to show how a two-dimensional quantum simulator array could be designed

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar
    • 

    corecore